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Abstract—Let G = (V,E) be an undirected graph, where
V is the vertex set and E is the edge set. A subset M of
E is an induced matching of G if M is a matching of G
and no two edges in M are joined by an edge. Finding a
maximum induced matching is a NP-Hard problem on general
graphs, even on bipartite graphs. However, this problem can be
solved in polynomial time in some special graph classes such as
weakly chordal, chordal, interval and circular-arc graphs. In this
paper, we introduce a maximum induced matching algorithm in
permutation graphs with O(|V |k(G) log log(|V |)) time in worst
case complexity and O(|V |√|V | log log(|V |)) time in average
case complexity, where k(G) is the cardinality of the minimum
clique cover set. The approach is to reduce the size of vertex
set of L(G)2 without changing the cardinality of its maximum
independent set. Our algorithm has better time complexity than
the best known algorithm in both worst case and average case.

I. INTRODUCTION

For a finite set V = 1, 2, . . . , n and a permutation π =
[π[1], π[2], . . . , π[n]] of V , let G(π) = (V,E) denote the
undirected graph satisfying (i, j) ∈ E iff (i − j)(π−1[i] −
π−1[j]) < 0, where π−1 is the reverse permutation of π. A
graph G is a permutation graph iff there exists a permutation
π such that G = G(π).

A permutation graph can be visualized through its permuta-
tion diagram. A permutation diagram of a permutation graph
G(π) consists of two parallel horizontal channels, called top
channel and bottom channel. In the top channel, there are
n points labeled 1, 2, . . . , n from left to right. We put the
numbers π[1], π[2], . . . , π[n] with the same order in the bottom
channel. For each i, draw a straight line, labeled i, joining two
numbers i in the top channel and in the bottom channel. The
line i intersects the line j iff there is an edge between i and j
in G(π). From here we use the word “line” as a reference to its
corresponding vertex. Figure 1 shows a permutation diagram.

An edge set M ⊂ E is called a matching of G iff there
does not exist a pair of edges in M with a common vertex.
An induced matching of G is a matching where the distance
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Fig. 1. Permutation diagram

between two arbitrary vertices in two different edges is at least
two. Induced matchings have many applications in practice,
such as for ensuring the security of the information transferring
channel, VLSI and network flow problems. Recently, these
problems attracted much attention because of their theoretical
interest and practical motivation, see some related papers [2],
[6], [7], [9], [11], [12], [13], [18], [19], [21], [22].

A subset S of V is called an independent set if no two
vertices in S are adjacent. It is well-known that finding a
maximum independent set (MIS) of a graph is a NP-Hard
problem. The number of vertices in a MIS of G is called the
independence number, denoted by α(G).

The maximum induced matching (MIM for short) problem
is first proposed in 1989 by Cameron [3]. While the maximum
matching problem can be solved in polynomial time in an
arbitrary graph, the MIM problem is a NP-Hard problem, even
for bipartite graphs. The MIM problem on general graphs
can be solved by some brand-and-reduce algorithms, but
all of them have exponential time complexity. Chang et al.
introduced an improvement for the previous brand-and-reduce
algorithm and obtained an O(1.4321n) time algorithm [10].
Recently, Xiao et al. proposed two algorithms, one of them
can solve MIS problem in O(1.4213n) times and polynomial
space, the other is an O(1.3752n) times and exponential space
algorithm [24].978-1-5386-7678-3/18/$31.00 2018 IEEE
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However, the MIM problem can be solved in polynomial
time for interval graphs and chordal graphs [3], Circular arc
graphs [15], Trapezoid graphs and co-comparability graphs
[16], Asteroidal-triple-free graphs [4] [8], Weakly chordal
graphs [5], Interval-filament graphs [4].

Gk = (V,E′) is defined as a graph having the same vertex
set with G. Two vertices u, v in Gk are adjacent iff there exists
a path from u to v of length less than or equal to k.

Let L(G) denote the line graph of G, i.e., each edge of
G is a vertex of L(G), two vertices of L(G) are adjacent iff
two corresponding edges share a common endpoint. Figure 2
shows an example of a graph G and its line graph L(G).
An induced matching of a graph G corresponds with an
independent set of L(G)2. So there will be a polynomial
complexity algorithm for MIM whenever MIS of a graph can
be found in polynomial time. In some circumstances, avoiding
constructing fully the graph L(G)2 may lead to better time
complexity. There is algorithm that can find MIM in linear
time in some special graphs including chordal graphs [1],
interval graphs [16], tree graphs [25], [16] and permutation
bipartite graphs [8].
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Fig. 2. Constructing the line graph

Permutation graphs have been proven to be co-
comparability [17]. Golumbic et al. have introduced an
O(|E|2) algorithm finding MIM in co-comparability graph
[16].

In this paper, we present an algorithm solving MIM
problem with complexity O(n2 log(n)) in worst case and
O(n

√
n log(n)) in average case. Our approach is to reduce the

size of the graph L(G)2 but the cardinality of its MIS is still
unchanged. We find some α-redundant vertices which their
removal do not decrease the independence number of L(G)2.
Our algorithm has better time complexity than the best known
algorithm, which is an O(|E|2) algorithm [16], in both worst
case and average case. And there is a high probability that the
complexity of our algorithm is lower than cn

√
n log log(n)

with c is a constant.

II. BASIC NOTATIONS

A subset C of V is a clique if it induce a complete graph
from G. The number of vertices in a maximum clique of G
is ω(G). A clique cover of a graph is a partition V = C1 +

C2 + . . .+ Cn such that Ci is a clique for every i. Let k(G)
be the cardinality of the minimum clique cover of graph G.

For every line in G, we define the relation “completely on
the left”, denoting by “||”, which u||v iff u < v and π−1[u] <
π−1[v].

We use the same notation (u, v) to imply a vertex of L(G)
or L(G)2 and a trapezoid which has two diagonal lines u and
v.

III. L2(G) OF A PERMUTATION GRAPH

Lemma 1. G = (V,E) is the permutation graph correspond-
ing with a permutation π. Then L2(G) is a trapezoid graph.

Proof. We can represent G in a permutation diagram as in
figure 1. We will prove that each L2(G) is isomorphic with
the trapezoid graph T in which vertices are trapezoid with
2 diagonal lines is 2 intersected lines of the G. Each vertex
of T matches with a vertex of L2(G). It is obvious that two
trapezoids in T intersect iff at least one of their diagonal line
intersects the others. If there is an edge between two vertices
e1 = (u1, v1) and e2 = (u2, v2) in L2(G), so one line in
{u1, v1} coincides or intersects with a line in {u2, v2}. Thus
their corresponding trapezoids intersect each other. A similar
proof can be used for solving the backward.

We use the term trapezoid for vertices of L2(G) and any
trapezoid graph.

IV. THE CONSTRUCTION OF E∗

If we construct the L2(G) then the size of the input for
finding MIS will be O(n2). For example if the permutation
is [n, n − 1, . . . , 1], then the corresponding graph become
complete, and the cardinality of L2(G) will be n(n− 1)/2.
Finding a MIS in this graph costs O(n2 log log(n)) time. We
improve the algorithm by cutting down the size the of the
vertex set in L2(G). Let denote this new (trapezoid) graph by
E∗. For each line u and a clique Ci, we only keep the line
v which is the minimum line in Ci and satisfies v > u and
π−1[v] < π−1[u]. In different words, v is the smallest line
in Ci, which is larger than u and cuts u. The vertex of new
trapezoid (u, v) will be added to E∗. In the graph in figure 3,
we delete the vertex (u,w) and only keep the vertex (u, v).
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Fig. 3. The α-redundant trapezoid
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We will show that all trapezoids building from u and a line
in Ci are α-redundant except the chosen trapezoid.

Lemma 2. If any arbitrary trapezoid does not intersect with
a trapezoid with the diagonal lines u and w with u < w and
w ∈ Ci, it will also not cut the trapezoid (u, v).

Proof. Assume that a trapezoid (x, y) does not intersect with
(u,w) in L2(G), we will prove (x, y) does not intersects
(u, v), too. We have proven that two vertices in trapezoid
diagram are adjacent iff there exists a pair of their diagonal
lines cutting each other. Without losing the generality, we will
prove that x does not cut v, because x and u share no point.
Hence x cannot line in the segment [u,w].
The first case is x||w. So x < v because v > u. As v is the
minimum line cutting u in Ci, so π−1[v] is the largest among
the revert permutation of every member cutting u in Ci, so
π−1[x] < π−1[v]. Hence, x is completely on the left of v.
The w||x case can be solved by similar way.

V. MIM OF PERMUTATION GRAPHS

We describe our algorithm for finding a MIM of a permu-
tation graph as below:

Algorithm 1 Maximum induced matching in permutation
graphs

1: Input: Permutation π
2: Output: A maximum induced matching of G(π)
3: Finding Clique Cover CC(π) = (C1, C2, . . . , Cq) of

G(π)
4: E∗ = ∅.
5: for each line n in G(π) do
6: for each clique Ci in CC(π) do
7: Find the smallest line m in Ci that m < n and

π−1[m] > π−1[n]
8: E∗ = E∗ ∪ {(m,n)}
9: end for

10: end for
11: Find maximum independent set S of E∗

12: Return M = {(i, j)|(i, j) ∈S}

Step 3, we can construct an algorithm computing CC(π) in
O(n log log(n)) time by the following steps. We consider the
list π from the left to the right. At position j, if the list Ci is
empty, we immediately append the number π[j] to the back
of the list Ci. If Ci is not empty, we find the first next line
which is smaller than the last element in Ci. After completing
Ci, we continue this procedure to find Ci+1. Y. Liang and C.
Rhee [20] have proved the following lemma.

Lemma 3. Constructing CC(π) can be done in
O(n log log(n)).

VI. CORRECTNESS

Because an independent set of E∗ corresponds to an inde-
pendent set of L2(G), so α(E∗) ≤ α(L2(G)).

Assume that O = {e1, e2, . . . em} is an independent set
of L2(G). We will prove that there exist an independent set
IS = {e′1, e′2, . . . , e′m} in E∗.

We will construct IS from O. At the initial step, IS is
assigned by {e1, e2, . . . , em}, which mean e′j = ej for every
j . Suppose that e′j ∈ E∗ with every j ≤ k. Let e′k+1 =
ek+1 = (u,w) and w is in a clique Ci. We will prove that
ek+1 can be replaced by a vertex of E∗ denoted by (u, v) with
v is the smallest line in Ci which is larger than u and cuts u.

As our proof, (u, v) does not intersect any other trapezoid
in IS. For all diagonal lines l of a trapezoid j, the following
conditions hold:

l||u and l||v if j < k + 1
u||l and v||l if j > k + 1

So we can replace (u,w) by (u, v), and this new trapezoid
does not intersect any other trapezoids in IS. By mathematical
induction we can build an independent set IS from an arbitrary
independent set O of L2(G) with the cardinality is m and its
elements are vertices of E∗. As a result, α(L2(G)) ≤ α(E∗).
And because α(E∗) does not exceed α(L2(G)), we conclude
α(L2(G)) = α(E∗)

VII. COMPLEXITY

The number of elements in E∗ is O(nk(G)), maximum
independent set of E∗ can be found in O(|E| log log(|E|))
[14]. So the time complexity of the algorithm is
O(nk(G) log log(n)). Evaluation for k(G) in the worst
case is O(n). So the algorithm have O(n2 log log(n)) time
complexity.
In the average time case, the complexity is lower. We
suppose that the distribution of the permutation π is uniform.
Subsequently, the distribution of π−1 is uniform.

Theorem 1. The average case complexity of the algorithm is
O(n

√
n log log(n)).

To begin with the proof of this theorem, we consider the
following lemma.

Lemma 4. k(G) is equal to the number of maximum increas-
ing subsequence of π−1.

Proof. As G is a perfect graph, so k(G) = α(G). An inde-
pendent set of G can be presented as a set IS = v1, v2, . . . , vk
in increase order. Because vi does not intersect vj (vi < vj),
then π−1[vi] < π−1[vj ]. We get the result that the sequence
π−1[v1], π

−1[v2], . . . , π
−1[vk] is an increasing subsequence of

π−1. So the number of members in MIS is precisely equal
to the number of the maximum increasing subsequence of
π−1.

Lemma 5. Average number of k(G) over all n-vertices
permutation graphs is O(

√
n).

The following proof is based on the proof of D. Romik of
the problem finding the longest increasing subsequence of a
sequence [23].
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Proof. We call Gi as the subgraph of G which has vertices
from 1 to i and all of the edge between them and SG is the set
of all permutation graphs which have n vertices. We use ki and
ωi as symbol for the maximum independent set and maximum
clique contain vertex i of the graph Gi. It is obvious that n
pairs (ki, ωi) is distinguished since kj > ki if π−1[j] > π−1[i]
and ωj > ωi in other case. As the number of pairs (ki, ωi) does
not exceed the value k(G)ω(G) so we have k(G)ω(G) ≥ n.
Because the symmetry of the permutation set, we have the
equation:

E(k(G)) =
1

n!

∑
G∈SG

k(G) + ω(G)

2

= E

(
k(G) + ω(G)

2

)

≥ E(
√
k(G)ω(G))

≥ √
n

Now we will prove that limn→∞
k(G)√

n
≤ γ with γ is a

constant. We denote Xn,i is the random variable that indicates
the number of independent sets of G which have i vertices.
We have:

E(Xn,i) =
1

i!

(
n

i

)

Using Markov’s Inequality we have:

P(k(G) ≥ i) = P(Xn,i ≥ 1)

≤ E(Xn,i) =
1

i!

(
n

i

)
≤ ni

(i/e)2i

With n large enough, we can choose i = 	(1 + δ)e
√
n
 and

get:

P(k(G) ≥ i) ≤ ni

(i/e)2i
≤

(
1

1 + δ

)2i

≤
(

1

1 + δ

)(1+δ)e
√
n

Finally we get that:

E(k(G)) ≤ P(k(G) ≤ i)i+ P(k(G) ≥ i)n

≤ (1 + δ)e
√
n+ n

(
1

1 + δ

)(1+δ)e
√
n

= O(
√
n)

Furthermore, D. Romik has proved the following bound in
[23] that with some constants C, c and β:

P(k(G) ≥ β
√
n) ≤ Ce−c

√
n

We can derive from this inequality that if n is large enough,
the probability of k(G) ≥ β

√
n will decrease exponentially.

The time complexity of our algorithm can be estimated by
using this inequality. Let T (G) be the time of our algorithms

running in a graph G with n vertices. With any fixed constant
ε we have

P

(
T (G)

E(T (G))
− β ≥ ε

)
= P

(
k(G)

E(k(G))
− β ≥ ε

)

= P (k(G) ≥ (β + ε)E(k(G)))

= O
(
e−

√
n
)

VIII. CONCLUSION

The approach of removing the α-redundant vertices is an
effective method to reduce the complexity of the algorithms
solving the maximum independent set problems. Because an
induced matching of a graph corresponds with an independent
set of the square of its line graph, so this method is also
efficient in solving MIM problem. In the future, we will apply
this method in finding a maximum induced matching of some
other special graphs.
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